Daniela Pamplona

Laboratoire Images, Signaux et Systèmes Intelligents
Université Paris Est - Créteil
FRANCE

About

With 10 years of experience, I am a machine learning and vision scientist in a broad sense. My work spans from neural data analysis to context classification in computer vision. My latest research is in collaboration with Antoine Manzanera, in lifelong learning of visual representations, particularly in the problems of incremental learning and curiosity. I am also a lecturer in computer vision, mathematics, informatics, and cognitive science. I have taught at several French universities at BSc and MSc levels.

Research Interests

Visual perception, unsupervised Learning, incremental learning, probabilistic models, information theory, data science.

 

Articles

Pamplona, D.; Hilgen, G.; Hennig, M.; Cessac, B.; Sernagor, E.; Kornprobst P.; Receptive field estimation in large visual neuron assemblies using a super-resolution approach, Journal of Neurophysiology, 2022 Code

Pamplona, D; Manzanera A.; Naturally Constrained Online Expectation Maximization,International Conference on Pattern Recognition (ICPR), 2020 Poster

Cessac, B; Kornprobst, P.; Kraria, S.; Nasser, H.; Pamplona, D.; Portelli, G.; Vieville T. PRANAS: A New Platform for Retinal Analysis and Simulation, Frontiers NeuroInformatics, 2017

Hilgen, G.; Pirmoradian, S.; Pamplona, D.; Kornprobst, P.; Cessac, B.; Hennig, M.H.; Sernagor E.; Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina,Scientific Reports, 2017

Pamplona, D.; Triesch, J.; Rothkopf,C. A. ; Power spectra of the natural input to the visual system, Vision Research, 2013 Download code

Pamplona, D.; Bernardino, A.; Smooth Foveal Vision with Gaussian Receptive Fields, 9th IEEE - RAS International Conference on Humanoids Robots, 2009

 

Abstracts

Pamplona, D. ; Manzanera A. ; Should I stay or should I go? Addressing the curiosity/boredom dilemma of a domestic robot, international Workshop on Intrinsically Motivated Open-ended Learning, 2023,

Pamplona, D.; Manzanera A.; Uncertainty driven gaze selection, European Conference on Eye Movements (oral presentation), 2022

Pamplona, D.; Manzanera A.; Naturally Constrained Online Expectation Maximization, Conférence sur l'Apprentissage automatique, 2021

Cessac, B.; Kornprobst, P.; Kraria, S.; Nasser, H.; Pamplona, D.; Portelli, G.; Vieville T.; ENAS: A new software for spike train analysis and simulation, Bernstein Conference 2016

Hilgen, G.; Softley, S.; Pamplona, D.; Kornprobst, P.; Cessac, B.; Sernagor, E.; The effect of retinal GABA Depletion by Allylglycine on mouse retinal ganglion cell responses to light, European Retina Meeting, 2015

Pamplona, D.; Hilgen, G.; Cessac, B.; Sernagor, E.; Kornprobst, P.; A super-resolution approach for receptive fields estimation of neuronal ensembles, 24th Annual Computational Neuroscience Meeting (CNS), 2015

Pamplona, D.; Cessac, B.; Kornprobst, P.; Shifting stimulus for faster receptive fields estimation of ensembles of neurons, Computational and Systems Neuroscience (Cosyne), 2015

Pamplona, D.; Triesch, J.; Rothkopf,C.; Eye's imaging process explains ganglion cells anisotropies, Computational and Systems Neuroscience (Cosyne), 2013

Pamplona, D.; Triesch, J.; Rothkopf,C.; The statistics of looking: Deriving properties of retinal ganglion cells across the visual field, 12th Annual meeting of the Vision Sciences Society, 2012 (oral presentataion)

Pamplona, D.; Triesch, J.; Rothkopf,C.; Predicting Ganglion Cells Variability, Computational and Systems Neuroscience (Cosyne), 2011

Pamplona, D.; Triesch, J.; Rothkopf,C.; Edge and image statistics across the visual field, Bernstein Conference, 2011

Pamplona, D.; Weber, C.; Triesch J.;Foveation with optimized receptive fields, Bernstein Conference, 2009

Tushev G.; Liu, M.; Pamplona, D.; Bornschein, J.; Weber, C.; Triesch J.; Foveated Vision with FPGA Camera, Bernstein Conference, 2009 (demo)

Teaching

Since 2017, I am teaching several classes, namely: Introduction to Matlab, Visual Perception and Learning, Probabilities and Statistics III, Neuro-computational Models of Vision, Signal Processing, Methods Data and Algorithms.